Clostridium thermocellum DSM 1313 transcriptional responses to redox perturbation
نویسندگان
چکیده
BACKGROUND Clostridium thermocellum is a promising consolidated bioprocessing candidate organism capable of directly converting lignocellulosic biomass to ethanol. Current ethanol yields, productivities, and growth inhibitions are industrial deployment impediments for commodity fuel production by this bacterium. Redox imbalance under certain conditions and in engineered strains may contribute to incomplete substrate utilization and may direct fermentation products to undesirable overflow metabolites. Towards a better understanding of redox metabolism in C. thermocellum, we established continuous growth conditions and analyzed global gene expression during addition of two stress chemicals (methyl viologen and hydrogen peroxide) which changed the fermentation redox potential. RESULTS The addition of methyl viologen to C. thermocellum DSM 1313 chemostat cultures caused an increase in ethanol and lactate yields. A lower fermenter redox potential was observed in response to methyl viologen exposure, which correlated with a decrease in cell yield and significant differential expression of 123 genes (log2 > 1.5 or log2 < -1.5, with a 5 % false discovery rate). Expression levels decreased in four main redox-active systems during methyl viologen exposure; the [NiFe] hydrogenase, sulfate transport and metabolism, ammonia assimilation (GS-GOGAT), and porphyrin/siroheme biosynthesis. Genes encoding sulfate transport and reduction and porphyrin/siroheme biosynthesis are co-located immediately downstream of a putative iscR regulatory gene, which may be a cis-regulatory element controlling expression of these genes. Other genes showing differential expression during methyl viologen exposure included transporters and transposases. CONCLUSIONS The differential expression results from this study support a role for C. thermocellum genes for sulfate transport/reduction, glutamate synthase-glutamine synthetase (the GS-GOGAT system), and porphyrin biosynthesis being involved in redox metabolism and homeostasis. This global profiling study provides gene targets for future studies to elucidate the relative contributions of prospective pathways for co-factor pool re-oxidation and C. thermocellum redox homeostasis.
منابع مشابه
Exploring complex cellular phenotypes and model-guided strain design with a novel genome-scale metabolic model of Clostridium thermocellum DSM 1313 implementing an adjustable cellulosome
BACKGROUND Clostridium thermocellum is a gram-positive thermophile that can directly convert lignocellulosic material into biofuels. The metabolism of C. thermocellum contains many branches and redundancies which limit biofuel production, and typical genetic techniques are time-consuming. Further, the genome sequence of a genetically tractable strain C. thermocellum DSM 1313 has been recently s...
متن کاملElectrotransformation of Clostridium thermocellum.
Electrotransformation of several strains of Clostridium thermocellum was achieved using plasmid pIKm1 with selection based on resistance to erythromycin and lincomycin. A custom-built pulse generator was used to apply a square 10-ms pulse to an electrotransformation cuvette consisting of a modified centrifuge tube. Transformation was verified by recovery of the shuttle plasmid pIKm1 from presum...
متن کاملRole of spontaneous current oscillations during high-efficiency electrotransformation of thermophilic anaerobes.
Current oscillations at about 24 MHz were observed during electrotransformation (ET) of the thermophilic anaerobes Clostridium thermocellum ATCC 27405, C. thermocellum DSM 1313, and Thermoanaerobacterium saccharolyticum YS 485, using a pulse gated by a square signal generated by a custom generator. In experiments in which only the field strength was varied, all three of these strains resulted i...
متن کاملEnhanced saccharification of lignocellulosic agricultural biomass and increased bioethanol titre using acclimated Clostridium thermocellum DSM1313
Consolidated bioprocess assures an efficient lignocellulosic conversion to fermentable sugars and subsequently to bioethanol. Such a single-step hydrolysis and anaerobic fermentation was achieved with acclimated Clostridium thermocellum DSM 1313 on different mildly pre-treated agricultural lignocellulosic residues without any additional enzymes/and strains. Acclimation was achieved by serially ...
متن کاملHow does cellulosome composition influence deconstruction of lignocellulosic substrates in Clostridium (Ruminiclostridium) thermocellum DSM 1313?
BACKGROUND Bioethanol production processes involve enzymatic hydrolysis of pretreated lignocellulosic biomass into fermentable sugars. Due to the relatively high cost of enzyme production, the development of potent and cost-effective cellulolytic cocktails is critical for increasing the cost-effectiveness of bioethanol production. In this context, the multi-protein cellulolytic complex of Clost...
متن کامل